ar X iv : h ep - p h / 02 11 17 8 v 1 1 2 N ov 2 00 2 1 Numerical evaluation of master integrals from differential equations ∗
نویسندگان
چکیده
The 4-th order Runge-Kutta method in the complex plane is proposed for numerically advancing the solutions of a system of first order differential equations in one external invariant satisfied by the master integrals related to a Feynman graph. The particular case of the general massive 2-loop sunrise self-mass diagram is analyzed. The method offers a reliable and robust approach to the direct and precise numerical evaluation of master integrals.
منابع مشابه
ar X iv : h ep - t h / 02 11 04 8 v 1 7 N ov 2 00 2 Inflation , Quantum Cosmology and the Anthropic Principle 1
متن کامل
ar X iv : h ep - e x / 02 11 06 9 v 1 2 8 N ov 2 00 2 Jet Production at CDF Mario Mart́ınez
متن کامل
ar X iv : h ep - p h / 02 11 38 2 v 1 2 5 N ov 2 00 2 Gold - plated Mode of CP - Violation in Decays of Ξ bc Baryons
متن کامل